Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Biochem. 1997 Dec 1;250(2):308-14.

Specificity and direction of depolymerization of beta-poly(L-malate) catalysed by polymalatase from Physarum polycephalum--fluorescence labeling at the carboxy-terminus of beta-poly(L-malate).

Author information

1
Institut für Biophysik und physikalische Biochemie der Universität Regensburg, Germany.

Abstract

Beta-poly(L-malate), a major constituent of nuclei in plasmodia of Physarum polycephalum, is enzymatically degraded to L-malate after secretion into the culture medium. This depolymerization is specifically catalysed by an endogenous polymalatase. The mode of action and the specificity criteria have been investigated by employing various chemical derivatives of beta-poly(L-malate), including substitution at the hydroxy-terminus and carboxy-terminus of the polymer, esterification of the pending alpha-carboxylate, and beta-poly(DL-malate). The results of the investigation were summarized in a specificity model that involved recognition of the hydroxy-terminus and of the alpha-carboxylate as substituents of the asymmetric carbon in the malic acid unit. Depolymerization proceeded from the hydroxy-terminus towards the carboxy-terminus, thereby degrading the polymer to L-malate. When the terminal beta-carboxylate had been amidated with the fluorescent N-(1-naphthyl)ethylenediamine, degradation was normal but was arrested at the level of the terminal beta-carboxy-substituted dimer. It should be possible to employ polymalatase as a tool for the detection of branching and other modifications of beta-poly(L-malate).

PMID:
9428678
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center