Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Jan 9;273(2):685-8.

Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase.

Author information

  • 1Howard Hughes Medical Institute, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

The classical paradigm for G protein-coupled receptor (GPCR) signal transduction involves the agonist-dependent interaction of GPCRs with heterotrimeric G proteins at the plasma membrane and the subsequent generation, by membrane-localized effectors, of soluble second messengers or ion currents. Termination of GPCR signals follows G protein-coupled receptor kinase (GRK)- and beta-arrestin-mediated receptor uncoupling and internalization. Here we show that these paradigms are inadequate to account for GPCR-mediated, Ras-dependent activation of the mitogen-activated protein (MAP) kinases Erk1 and -2. In HEK293 cells expressing dominant suppressor mutants of beta-arrestin or dynamin, beta2-adrenergic receptor-mediated activation of MAP kinase is inhibited. The inhibitors of receptor internalization specifically blocked Raf-mediated activation of MEK. Plasma membrane-delimited steps in the GPCR-mediated activation of the MAP kinase pathway, such as tyrosine phosphorylation of Shc and Raf kinase activation by Ras, are unaffected by inhibitors of receptor internalization. Thus, GRKs and beta-arrestins, which uncouple GPCRs and target them for internalization, function as essential elements in the GPCR-mediated MAP kinase signaling cascade.

PMID:
9422717
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk