Send to

Choose Destination
J Neuroendocrinol. 1997 Nov;9(11):835-40.

Neuronal synchronization and ionic mechanisms for propagation of excitation in the functional network of immortalized GT1-7 neurons: optical imaging with a voltage-sensitive dye.

Author information

Department of Physiology, Yokohama City University School of Medicine, Japan.


Immortalized gonadotropin releasing hormone (GnRH) neurons (GT1 cell line) in culture release GnRH in a pulsatile manner, suggesting that GT1 cells form a functional neuronal network. Optical imaging techniques and a voltage-sensitive fluorescent dye (RH795) were used to study the mechanism of neuronal synchronization and intercellular communication in cultured GT1-7 cells (one of the subclones of the GT1 cell line). The majority (79%) of GT1-7 cells in contact with one another revealed synchronized fluctuations in spontaneous neuronal activity. When a cell in contact with other cells was electrically stimulated, the evoked excitation was propagated to neighbouring cells. The ionic mechanisms involved in the propagation of electrical signals between interconnected GT1-7 cells were investigated using various blockers of Na+, Ca2+ and K+ channels. The propagation of stimulus-evoked excitation was prevented by the voltage-dependent Na+ channel blocker tetrodotoxin. It was also prevented by the voltage-dependent Ca2+ channel blockers, Ni+ (nonselective), nimodipine (L-type) and flunarizine (T-type > L-type), but not apparently affected by omega-agatoxin IVA (P- and Q-type) and omega-conotoxin MVIIA (N-type). The propagation was not influenced by the K+ channel blockers, quinine, tetraethylammonium and Ba2+, but in some cases, it was enhanced by 4-aminopyridine (4-AP) and prevented by apamin. These results suggest that voltage-dependent Na+ channels and L- and T-type Ca2+ channels are involved in the propagation of electrical signals in the GT1-7 neuronal network. Ionic mechanisms, through 4-AP- or apamin-sensitive K+ channels, also seem to be involved in the regulation of signal propagation. These mechanisms may underlie the functioning of the neuronal network formed by immortalized GnRH neurons.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center