Format

Send to

Choose Destination
FEBS Lett. 1997 Nov 17;417(3):270-4.

Saposins (sap) A and C activate the degradation of galactosylceramide in living cells.

Author information

1
Institut für Hirnforschung, Universität Tübingen, Germany.

Abstract

In loading tests using galactosylceramide which had been labelled with tritium in the ceramide moiety, living skin fibroblast lines derived from the original prosaposin-deficient patients had a markedly reduced capacity to degrade galactosylceramide. The hydrolysis of galactosylceramide could be partially restored in these cells, up to about half the normal rate, by adding pure saposin A, pure saposin C, or a mixture of these saposins to the culture medium. By contrast, saposins B and D had little effect on galactosylceramide hydrolysis in the prosaposin-deficient cells. Cells from beta-galactocerebrosidase-deficient (Krabbe) patients had a relatively high residual galactosylceramide degradation, which was similar to the rate observed for prosaposin-deficient cells in the presence of saposin A or C. An SV40-transformed fibroblast line from the original saposin C-deficient patient, where saposin A is not affected, showed normal degradation of galactosylceramide. The findings support the hypothesis, which was deduced originally from in vitro experiments, that saposins A and C are the in vivo activators of galactosylceramide degradation. Although the results with saposin C-deficient fibroblasts suggest that the presence of only saposin A allows galactosylceramide breakdown to proceed at a normal rate in fibroblasts, it remains to be determined whether saposins A and C can substitute for each other with respect to their effects on galactosylceramide metabolism in the whole organism.

PMID:
9409731
DOI:
10.1016/s0014-5793(97)01302-1
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center