Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1997 Dec;78(6):3154-64.

Activation and recovery of the PGE2-mediated sensitization of the capsaicin response in rat sensory neurons.

Author information

Medical Neurobiology Program, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.


Pro-inflammatory prostaglandins are known to enhance the sensitivity of sensory neurons to various modalities of stimulation, including the excitatory chemical agent, capsaicin. In this report, we examined the capacity of prostaglandin E2 (PGE2) to enhance the capsaicin response recorded from sensory neurons isolated from embryonic rats and grown in culture. Previous work demonstrated that the cyclic adenosine 3',5'-monophosphate pathway mediates initiation of the PGE2-induced sensitization, however, little is known about the pathways regulating the recovery from sensitization. Therefore, we examined the neuronal transduction cascades that control the duration of sensitization. Treatment with PGE2 enhanced the capsaicin-evoked current by two- to threefold, however, this sensitization was transient even in the continued presence of prostaglandin. The duration of sensitization produced by PGE2 was related inversely to the extracellular Ca2+ concentration with the shortest recovery times observed in cells exposed to 2 mM Ca2+-Ringer. Inclusion of the Ca2+ chelator, bis-(o-aminophenoxy)-N, N,N',N'-tetraacetic acid, in the recording pipette greatly lengthened the period of sensitization. Pretreatment with either the nitric oxide synthase inhibitor, nitro-L-arginine methyl ester (L-NAME), or the inhibitor of the cyclic guanosine 3', 5'-monophosphate (GMP)-dependent protein kinase, KT-5823, before the application of PGE2 increased the duration of sensitization even in the presence of 2 mM Ca2+. In contrast, after attaining maximal sensitization in 2 mM Ca2+-Ringer containing L-NAME, the addition of either nitric oxide donors (3-morpholinosydnonimine or s-nitroso-n-acetylpenicillamine) or 8-Br-cyclic GMP led to a rapid decrease in the level of sensitization. In the absence of sensitization, nitric oxide-cyclic GMP modulating agents had no effect on the capsaicin-evoked current. Therefore, these results suggest that capsaicin-induced elevations in intracellular Ca2+ levels lead to an enhanced production of cyclic GMP, via the nitric oxide pathway, that ultimately activates cyclic GMP-dependent protein kinase. This protein kinase inactivates or terminates the sensitization produced by PGE2 by an as yet unidentified mechanism.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center