Format

Send to

Choose Destination
J Neurophysiol. 1997 Dec;78(6):3008-18.

Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus.

Author information

1
Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.

Abstract

In rat CA1 hippocampal pyramidal neurons (HPNs), somatostatin (SST) has inhibitory postsynaptic actions, including hyperpolarization of the membrane at rest and augmentation of the K+ M-current. However, the effects of SST on synaptic transmission in this brain region have not been well-characterized. Therefore we used intracellular voltage-clamp recordings in rat hippocampal slices to assess the effects of SST on pharmacologically isolated synaptic currents in HPNs. SST depressed both (R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate and N-methyl--aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSCs) in a reversible manner, with an apparent IC50 of 22 nM and a maximal effect at 100 nM. In contrast, SST at concentrations up to 5 microM had no direct effects on either gamma-aminobutyric acid-A (GABAA) or GABAB receptor-mediated inhibitory postsynaptic currents (IPSCs). The depression of EPSCs by SST was especially robust during hyperexcited states when polysynaptic EPSCs were present, suggesting that this peptide could play a compensatory role during seizurelike activity. SST effects were greatly attenuated by the alkylating agent N-ethylmaleimide, thus implicating a transduction mechanism involving the Gi/Go family of G-proteins. Use of 2 M Cs+ in the recording electrode blocked the postsynaptic modulation of K+ currents by SST, but did not alter the effects of SST on EPSCs, indicating that postsynaptic K+ currents are not involved in this action of SST. However, 2 mM external Ba2+ blocked the effect of SST on EPSCs, suggesting that presynaptic K+ channels or other presynaptic mechanisms may be involved. These findings and previous results from our laboratory show that SST has multiple inhibitory effects in hippocampus.

PMID:
9405520
DOI:
10.1152/jn.1997.78.6.3008
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center