Send to

Choose Destination
EMBO J. 1997 Dec 15;16(24):7382-92.

Induction of TNF-sensitive cellular phenotype by c-Myc involves p53 and impaired NF-kappaB activation.

Author information

Molecular/Cancer Biology Laboratory, Haartman Institute, PO Box 21, 00014 University of Helsinki, Finland.


Normal fibroblasts are resistant to the cytotoxic action of tumor necrosis factor (TNF), but are rendered TNF-sensitive upon deregulation of c-Myc. To assess if oncoproteins induce the cytotoxic TNF activity by modulating TNF signaling, we investigated the TNF-elicited signaling responses in fibroblasts containing a conditionally active c-Myc protein. In association with cell death, c-Myc impaired TNF-induced activation of phospholipase A2, JNK protein kinase and cell survival-signaling-associated NF-kappaB transcription factor complex. The TNF-induced death of mouse primary fibroblasts expressing deregulated c-Myc was inhibited by transient overexpression of the p65 subunit of NF-kappaB, which increased NF-kappaB activity in the cells. Unlike other TNF-induced signals, TNF-induced accumulation of the wild-type p53 mRNA and protein was not inhibited by c-Myc. TNF, with c-Myc, induced apoptosis in mouse primary fibroblasts but only weakly in p53-deficient primary fibroblasts. The C-terminal domain of p53, which is a transacting dominant inhibitor of wild-type p53, failed to inhibit apoptosis by c-Myc and TNF, suggesting that the cell death was not dependent on the transcription-activating function of p53. Taken together, the present findings show that the cytotoxic activity of TNF towards oncoprotein-expressing cells involves p53 and an impaired signaling for survival in such cells.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center