Send to

Choose Destination
See comment in PubMed Commons below
EMBO J. 1997 Dec 15;16(24):7261-71.

The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src.

Author information

European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.


The crystal structures of the regulated Src and Hck tyrosine kinases show intramolecular interactions between the phosphorylated tail and the SH2 domain as well as between the SH3 domain, the SH2-catalytic domain linker (SH2-CD linker) and the catalytic domain. The relative contribution of these interactions to regulation of activity is poorly understood. Mutational analysis of Src and Lck revealed that interaction of the SH2-CD linker with the SH3 domain is crucial for regulation. Moreover, three sites of interaction of the linker with the catalytic domain, one at the beginning (Trp260) and two at the back of the small lobe, opposite the catalytic cleft (beta2/beta3 loop; alphaC/beta4 loop), impinge on Src activity. Other activating mutations map to the front of the catalytic domain in the loop preceding the alphaC-helix (beta3/alphaC loop). SH2-CD linker mutants are deregulated in mammalian cells but transform fibroblasts weakly, suggesting that the linker may bind cellular components. Interpretation of our results on the basis of the crystal structure of Src favours a model in which the correctly positioned SH2-CD linker exerts an inhibitory function on catalysis of Src family members by facilitating displacement of the alphaC-helix. This study may provide a template for the generation of deregulated versions of other protein kinases.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center