Send to

Choose Destination
Nat Genet. 1997 Dec;17(4):457-61.

ATM and RPA in meiotic chromosome synapsis and recombination.

Author information

Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.


ATM is a member of the phosphatidylinositol 3-kinase (PIK)-like kinases, some of which are active in regulating DNA damage-induced mitotic cell-cycle checkpoints. ATM also plays a role in meiosis. Spermatogenesis in Atm-/- male mice is disrupted, with chromosome fragmentation leading to meiotic arrest; in human patients with ataxia-telangiectasia (A-T), gonadal atrophy is common. Immuno-localization studies indicate that ATM is associated with sites along the synaptonemal complex (SC), the specialized structure along which meiotic recombination occurs. Recombination, preceded by pairing of homologous chromosomes, is thought to require heteroduplex formation between homologous DNA, followed by strand exchange. These early meiotic steps (entailing the formation and processing of meiotic recombination intermediates with DNA-strand interruptions) require ssDNA-binding proteins such as replication protein A (RPA; refs 5-7). In somatic cells, DNA damage induces ATM-dependent phosphorylation of RPA. We demonstrate here that ATM and RPA co-localize along synapsed meiotic chromosomes and at sites where interactions between ectopic homologous chromosome regions appear to initiate. In Atm-/- meiotic prophase spermatocytes, immuno-localization shows that RPA is present along synapsing chromosomes and at sites of fragmentation of the SC. These results suggest that RPA and ATM co-localize at sites where interhomologous-DNA interactions occur during meiotic prophase and where breaks associated with meiotic recombination take place after synapsis, implying a possible functional interaction between these two proteins.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center