Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Neurol. 1997 Nov;148(1):147-56.

In vitro cell density-dependent clonal growth of EGF-responsive murine neural progenitor cells under serum-free conditions.

Author information

1
Department of Cell Biology, University of Massachusetts Medical Center, Worcester, USA.

Abstract

Neural progenitor cell populations responsive to epidermal growth factor (EGF) have been shown to have proliferative potential and give rise to neurons, astrocytes, and oligodendrocytes. We have characterized EGF-responsive neural progenitor cells that give rise to bilineage neuronal/glial colonies (colony-forming unit neuron-glia; CFU-NeGl) and unilineage neuronal colonies (CFU-Ne). Clonality was confirmed utilizing mixtures of brain cells from Balb/c and ROSA26 (transgenic for beta-galactosidase) mice. With a few exceptions, colonies showed either all blue cells or all clear cells after staining with X-Gal. Clonal growth was analyzed after 10-11 days in relation to cell density by determining colony size and plating efficiency. Growth was density dependent (no growth below 10,000 cell/ml) and thus single cell cloning was not accomplished. An average plating efficiency of 4% was found for EGF-responsive neural cells derived from day 15-18 murine embryos when cultured at 12,500 to 200,000 cells/ml. Similar results were obtained with 1-day-old postnatal neural cells. When colonies were categorized by size, the relative number of colonies over 50 cells appeared to be maximum at 50,000 plated cells/ml. After 11 days in culture, 94, 96, and 78% of the colonies contained cells that expressed nestin, neurofilament, and GFAP, respectively. Double-label experiments revealed that > 62% of the colonies contained both GFAP and neurofilament expressing cells. These studies establish the existence of at least two populations of clonal neural progenitors: CFU-Ne and CFU-NeGl in fetal and postnatal murine brain.

PMID:
9398457
DOI:
10.1006/exnr.1997.6672
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center