Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 1997 Nov 15;191(2):284-96.

A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation.

Author information

  • 1Department of Biochemistry, Cell, and Molecular Biology, University of Kansas, Lawrence 66045, USA. druden@kuhub.cc.ukans.edu

Abstract

We show that klp38B, isolated as a mutation that dominantly prolongs blastoderm mitotic cycles in Drosophila, encodes a Drosophila kinesin-like protein. Further genetic analyses show that Klp38B not only functions during mitosis, but is also required for meiosis and abdominal segmentation. Sequence comparisons suggest that Klp38B encodes an amino-terminal microtubule motor domain, a central alpha-helical coiled-coil domain, and a C-terminal globular domain. Evidence that Klp38B is required during meiosis is that flies transheterozygous for mutations in both klp38B and nod have a high frequency of 4th chromosome meiotic nondisjunction. Nod is a chromokinesin, a chromosome binding kinesin, that is believed to provide astral-exclusion forces during the metaphase stage of meiosis. Evidence that Klp38B is required during mitosis is that embryos from female germline clones of klp38B mutations have holes in the cuticle similar to a zygotic string (dCDC25) phenotype. Also, anti-Klp38B antibody injection into precellularization blastoderm embryos causes developmental arrest and the formation of circular mitotic figures. We speculate, based on these phenotypes, that Klp38B is a chromokinesin that provides astral-exclusion forces on the chromosomes during meiosis and mitosis. Consistent with this hypothesis, we have identified an HMG-1 homologous region on Klp38B that could potentially bind AT-rich DNA sequences. Finally, we show that klp38B mutations have defects in abdominal segmentation, suggesting that Klp38B, like Xenopus chromokinesin Xklp1, might be involved in polar granule formation.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk