Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1997 Dec 16;36(50):15892-9.

Elongation properties of vaccinia virus RNA polymerase: pausing, slippage, 3' end addition, and termination site choice.

Author information

1
Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.

Abstract

We have analyzed the elongation properties of vaccinia virus RNA polymerase during a single round of transcription in vitro. RNA-labeled ternary complexes were halted at a unique template position located upstream of a T-run (TTTTTTTTT) in the nontemplate strand; this element encodes an RNA signal for factor-dependent transcription termination at distal sites on the template. The halted ternary complexes were purified and allowed to resume elongation under a variety of conditions. We found that the T-run constituted a strong elongation block, even at high nucleotide concentrations. The principal sites of pausing were at a C position situated two nucleotides upstream of the first T in the T-run and at the first three to four T positions within the T-run. There was relatively little pausing at the five downstream Ts. Intrinsic pausing was exacerbated at suboptimal nucleotide concentrations. Ternary complexes arrested by the T-run at 10 microM NTPs rapidly traversed the T-run when the NTP pool was increased to 1 mM. Limiting GTP (1 microM) resulted in polymerase stuttering at the 3' margin of the T-run, immediately prior to a templated G position; this generated a ladder of slippage synthesis products. We found that vaccinia ternary complexes remained intact after elongating to the very end of a linear DNA template and that such complexes catalyzed the addition of extra nucleotides to the 3' end of the RNA chain. The 3' end addition required much higher concentrations of NTPs than did templated chain elongation. Finally, we report that factor-dependent transcription termination by vaccinia RNA polymerase downstream of the T-run was affected by nucleotide concentration. Limiting UTP caused the polymerase to terminate at sites closer to the UUUUUNU termination signal. This is consistent with the kinetic coupling model for factor-dependent termination.

PMID:
9398322
DOI:
10.1021/bi972037a
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center