Format

Send to

Choose Destination
Biochemistry. 1997 Dec 16;36(50):15650-9.

Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase.

Author information

1
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.

Abstract

4-Chlorobenzoate:coenzyme A (4-CBA:CoA) ligase catalyzes 4-chlorobenzoyl-coenzyme A formation in a two-step reaction consisting of the adenylation of 4-chlorobenzoate with adenosine 5'-triphosphate followed by acyl transfer from the 4-chlorobenzoyl adenosine 5'-monophosphate diester intermediate to coenzyme A. In this study, two core motifs present in the Pseudomonas sp. strain CBS3 4-CBA:CoA ligase (motif I, 161T-S-G-T-T-G-L-P-K-G170, and motif II, 302Y-G-T-T-E306) and conserved among the sequences representing the acyl-adenylate/thioester-forming enzyme family (to which the ligase belongs) were tested for their possible role in substrate binding and/or catalysis. The site-directed mutants G163I, G166I, P168A, K169M, and E306Q were prepared and then subjected to steady-state and transient kinetic studies. The results, which indicate reduced catalysis of the adenylation of 4-chlorobenzoate in the mutant enzymes, are interpreted within the context of the three-dimensional structure of the acyl-adenylate/thioester-forming enzyme family member, firefly luciferase.

PMID:
9398293
DOI:
10.1021/bi971262p
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center