Send to

Choose Destination
Biochemistry. 1997 Dec 9;36(49):15489-500.

Evidence that galactanase A from Pseudomonas fluorescens subspecies cellulosa is a retaining family 53 glycosyl hydrolase in which E161 and E270 are the catalytic residues.

Author information

Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K.


A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA was screened for galactanase-positive recombinants. The nine galactanase positive phage isolated contained the same galactanase gene designated galA. The deduced primary structure of the enzyme (galactanase A; GalA) encoded by galA had a Mr of 42 130 and exhibited significant sequence identity with a galactanase from Aspergillus aculeatus, placing GalA in glycosyl hydrolase family 53. The enzyme displayed properties typical of an endo-beta1, 4-galactanase and exhibited no activity against the other plant structural polysaccharides evaluated. Analysis of the stereochemical course of 2,4-dinitrophenyl-beta-galactobioside (2,4-DNPG2) hydrolysis by GalA indicated that the galactanase catalyzes the hydrolysis of glycosidic bonds by a double displacement general acid-base mechanism. Hydrophobic cluster analysis (HCA) suggested that family 53 enzymes are related to the GH-A clan of glycosyl hydrolases, which have an (alpha/beta)8 barrel structure. HCA also predicted that E161 and E270 were the acid-base and nucleophilic residues, respectively. Mutants of GalA in which E161 and E270 had been replaced with alanine residues were essentially inactive against galactan. Against 2,4-DNPG2, E161A exhibited a much lower Km and kcat than native GalA, while E270A was inactive against the substrate. Analysis of the pre-steady-state kinetics of 2,4-DNPG2 hydrolysis by E161A showed that there was an initial rapid release of 2,4-dinitrophenol (2,4-DNP), which then decayed to a slow steady-state rate of product formation. No pre-steady-state burst of 2,4-DNP release was observed with the wild-type enzyme. These data are consistent with the HCA prediction that E161 and E270 are the acid-base and nucleophilic catalytic residues of GalA, respectively.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center