Send to

Choose Destination
Circulation. 1997 Nov 18;96(10):3466-76.

Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart.

Author information

Max Delbrück Center for Molecular Medicine, Berlin, Germany.



In the heart, there are high constitutive levels of the two related small heat shock proteins, HSP25 and alphaB-crystallin. To gain insight into their functional role, we have analyzed abundance and location of both proteins in rat and human hearts at different stages of development and in diseased state.


Immunoblotting analysis of rat ventricular tissue at fetal, neonatal, and adult stages reveals the level of HSP25 to decline strongly during development, whereas the level of alphaB-crystallin remains nearly constant. In parallel, the portion of phosphorylated isoforms of HSP25 decreases as shown by two-dimensional polyacrylamide gel electrophoresis. HSP25 is detected in cardiomyocytes and endothelial and vascular smooth muscle cells, whereas alphaB-crystallin is detected in cardiomyocytes only by immunofluorescence and immunoelectron microscopy. Both proteins colocalize in the I-band and M-line region of myofibrils in cardiomyocytes. In diseased and transplanted adult human hearts, HSP25 and alphaB-crystallin levels are considerably elevated compared with fetal hearts. In failing adult human hearts, phosphorylated isoforms of HSP25 predominate, and cardiomyocytes with a partial dislocation of HSP25 and alphaB-crystallin are observed.


Differential accumulation and location of HSP25 and alphaB-crystallin in heart tissue during development imply distinct functions of both proteins, which seem to be involved in organization of cytoskeletal structures. As judged by level, phosphorylation state, and location of both small heat shock proteins, diseased adult human hearts share features with fetal hearts.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center