Format

Send to

Choose Destination
Mol Membr Biol. 1997 Jul-Sep;14(3):97-112.

What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review).

Author information

1
National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

This review describes the numerous and innovative methods used to study the structure and function of viral fusion peptides. The systems studied include both intact fusion proteins and synthetic peptides interacting with model membranes. The strategies and methods include dissecting the fusion process into intermediate stages, comparing the effects of sequence mutations, electrophysiological patch clamp methods, hydrophobic photolabelling, video microscopy of the redistribution of both aqueous and lipophilic fluorescent probes between cells, standard optical spectroscopy of peptides in solution (circular dichroism and fluorescence) and attenuated total reflection-Fourier transform infrared spectroscopy of peptides bound to planar bilayers. Although the goal of a detailed picture of the fusion pore has not been achieved for any of the intermediate stages, important properties useful for constraining the development of models are emerging. For example, the presence of alpha-helical structure in at least part of the fusion peptide is strongly correlated with activity; whereas, beta-structure tends to be less prevalent, associated with non-native experimental conditions, and more related to vesicle aggregation than fusion. The specific angle of insertion of the peptides into the membrane plane is also found to be an important characteristic for the fusion process. A shallow penetration, extending only to the central aliphatic core region, is likely responsible for the destabilization of the lipids required for coalescence of the apposing membranes and fusion. The functional role of the fusion peptides (which tend to be either nonpolar or aliphatic) is then to bind to and dehydrate the outer bilayers at a localized site; and thus reduce the energy barrier for the formation of highly curved, lipidic 'stalk' intermediates. In addition, the importance of the formation of specific, 'higher-order' fusion peptide complexes has also been shown. Recent crystallographic structures of core domains of two more fusion proteins (in addition to influenza haemagglutinin) has greatly facilitated the development of prototypic models of the fusion site. This latter effort will undoubtedly benefit from the insights and constraints gained from the studies of fusion peptides.

PMID:
9394290
DOI:
10.3109/09687689709048170
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center