Format

Send to

Choose Destination
See comment in PubMed Commons below
Neurobiol Aging. 1997 Sep-Oct;18(5):549-53.

Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys.

Author information

1
Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
2
Scripps Res Inst, La Jolla, CA

Abstract

The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.

PMID:
9390783
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center