Format

Send to

Choose Destination
J Clin Invest. 1997 Dec 1;100(11):2881-91.

Hypoxia increases human keratinocyte motility on connective tissue.

Author information

1
Department of Dermatology, Northwestern University Medical School, Chicago, Illinois 60611, USA.

Abstract

Re-epithelialization of skin wounds depends upon the migration of keratinocytes from the cut margins of the wound and is enhanced when human keratinocytes are covered with occlusive dressings that induce hypoxia. In this study, two independent migration assays were used to compare cellular motility on connective tissue components under normoxic or hypoxic conditions. Human keratinocytes apposed to collagens or fibronectin exhibited increased motility when subjected to hypoxic (0.2 or 2% oxygen) conditions compared with normoxic (9 or 20% oxygen) conditions. When compared with normoxic cells, hypoxic keratinocytes exhibited increased expression and redistribution of the lamellipodia-associated proteins (ezrin, radixin, and moesin). Furthermore, hypoxic keratinocytes demonstrated decreased secretion of laminin-5, a laminin isoform known to inhibit keratinocyte motility. Hypoxia did not alter the number of integrin receptors on the cell surface, but did induce enhanced secretion of the 92-kD type IV collagenase. These data demonstrate that hypoxia promotes human keratinocyte motility on connective tissue. Hypoxia-driven motility is associated with increased expression of lamellipodia proteins, increased expression of collagenase and decreased expression of laminin-5, the locomotion brake for keratinocytes.

PMID:
9389755
PMCID:
PMC508495
DOI:
10.1172/JCI119837
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center