Format

Send to

Choose Destination
See comment in PubMed Commons below
J Gen Physiol. 1997 Dec;110(6):741-7.

Modulation of GABAC response by Ca2+ and other divalent cations in horizontal cells of the catfish retina.

Author information

1
Department of Physiology, Keio University School of Medicine, Tokyo 160, Japan. mkaneda@mc.med.keio.ac.jp

Abstract

GABAC responses were recorded in cultured cone-driven horizontal cells from the catfish retina using the patch clamp technique. At a holding potential of -49 mV, a bicuculline-resistant inward current (IGABA) was observed when 10 microM GABA was applied. The amplitude of IGABA increased as the extracellular Ca2+ ([Ca2+]o) was increased. Concentration-response curves of IGABA at 2.5 and 10 mM -Ca2+-o had similar EC50 (3.0 and 3.1 microM) and Hill coefficients (1.54 and 1. 24). However, the maximal response estimated at 10 mM [Ca2+]o was larger than the maximal response at 2.5 mM [Ca2+]o. Increasing Ca influx through voltage-gated Ca channels and the resulting rise in the intracellular Ca2+ concentration had no effects on IGABA. However, IGABA was inhibited by extracellular divalent cations, with the following order of the inhibitory potency: Zn2+ > Ni2+ > Cd2+ > Co2+. The inhibitory action of Zn2+ on the [Ca2+]o-dependent IGABA increase was noncompetitive. The action of [Ca2+]o on IGABA was mimicked by Ba2+ or Sr2+. These results demonstrate that the extracellular domain of GABAC receptors has two functionally distinct binding sites represented by Ca2+ (facilitation) and Zn2+ (inhibition). Since [Ca2+]o and [Zn2+]o change into the opposite direction by light, it seems likely that they modify cooperatively the efficacy of the positive feedback consisting of the GABAC receptor.

PMID:
9382900
PMCID:
PMC2229397
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center