Send to

Choose Destination
J Orthop Res. 1997 Jul;15(4):546-57.

Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation.

Author information

Department of Biomedical Engineering, Cleveland Clinic Foundation, Ohio 44195, USA.


Human bone marrow was harvested by means of iliac crest aspiration and cultured under conditions that promote an osteoblastic phenotype. Human bone marrow aspirates from 30 normal subjects, ages 8-80 years, with no systemic illness, yielded a mean of 92 +/- 65 x 10(6) nucleated cells per 2 ml of aspirate. The prevalence of potential osteoblastic progenitors was estimated by counting the number of alkaline phosphatase-positive colonies. This assay demonstrated a mean of 43 +/- 28 alkaline phosphatase-positive colonies per 10(6) nucleated cells, which was about one per 23,000 nucleated cells. The prevalence of these colonies was positively correlated with the concentration of nucleated cells in the original aspirate (p = 0.014) and was negatively correlated with donor age (p = 0.020). The population of alkaline phosphatase-positive colonies in this model sequentially exhibited markers of the osteoblastic phenotype; essentially all colonies (more than 99%) stained positively for alkaline phosphatase on day 9. Matrix mineralization, which was associated with the synthesis of bone sialoprotein, was demonstrated on day 17 with alizarin red S staining. On day 45, cells that were stimulated with 1,25-dihydroxyvitamin D3 synthesized and secreted osteocalcin at concentrations consistent with known osteoblastic cell lines. This model provides a useful method for the assay of progenitors of connective tissue from human subjects, examination of the effects of aging and selected disease states on this progenitor population, and investigation into the regulation of human osteoblastic differentiation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center