Format

Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 1997 Nov;73(5):2489-502.

Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.

Author information

1
Department of Physiology, Loyola University Medical Center, Maywood, Illinois 60153, USA.

Abstract

Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.

PMID:
9370442
PMCID:
PMC1181150
DOI:
10.1016/S0006-3495(97)78277-8
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center