Format

Send to

Choose Destination
Biochemistry. 1997 Nov 18;36(46):14173-80.

Presence of two rhodopsin intermediates responsible for transducin activation.

Author information

1
Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-01, Japan.

Abstract

To identify how many rhodopsin intermediates interact with retinal G-protein transducin, the photobleaching process of chicken rhodopsin has been investigated in the presence or absence of transducin by means of time-resolved low-temperature spectroscopy. Singular value decomposition (SVD) analysis of the spectral data showed that a new intermediate called meta Ib is present between formally identified metarhodopsin I (now referred to as meta Ia) and metarhodopsin II (meta II). Since the absorption maximum of meta Ib (460 nm) is similar to that of meta Ia (480 nm), but considerably different from that of meta II (380 nm), meta Ib should have a protonated retinylidene Schiff base as its chromophore. Whereas transducin showed no effect on the conversion process between lumirhodopsin (lumi) and meta Ia, it affected the process between meta Ia and meta Ib and that between meta Ib and meta II. These results suggest that at least two intermediates (meta Ib and meta II) interact with transducin. The addition of GTPgammaS had no effect on the meta Ib-transducin interaction, while it abolished the ability of transducin to interact with meta II. Thus, meta Ib only binds to transducin, while meta II catalyzes a GDP-GTP exchange in transducin. These results suggest that deprotonation of the Schiff base chromophore is not necessary for the binding to transducin, while changes in protein structure including Schiff base deprotonation are needed to induce the GDP-GTP exchange in transducin.

PMID:
9369490
DOI:
10.1021/bi970932o
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center