Format

Send to

Choose Destination
IEEE Trans Med Imaging. 1997 Oct;16(5):598-609.

Multiple sclerosis lesion quantification using fuzzy-connectedness principles.

Author information

1
Department of Radiology, University of Pennsylvania, Philadelphia 19104-6021, USA. jay@mipg.upenn.edu

Abstract

Multiple sclerosis (MS) is a disease of the white matter. Magnetic resonance imaging (MRI) is proven to be a sensitive method of monitoring the progression of this disease and of its changes due to treatment protocols. Quantification of the severity of the disease through estimation of MS lesion volume via MR imaging is vital for understanding and monitoring the disease and its treatment. This paper presents a novel methodology and a system that can be routinely used for segmenting and estimating the volume of MS lesions via dual-echo fast spin-echo MR imagery. A recently developed concept of fuzzy objects forms the basis of this methodology. An operator indicates a few points in the images by pointing to the white matter, the grey matter, and the cerebro-spinal fluid (CSF). Each of these objects is then detected as a fuzzy connected set. The holes in the union of these objects correspond to potential lesion sites which are utilized to detect each potential lesion as a three-dimensional (3-D) fuzzy connected object. These objects are presented to the operator who indicates acceptance/rejection through the click of a mouse button. The number and volume of accepted lesions is then computed and output. Based on several evaluation studies, we conclude that the methodology is highly reliable and consistent, with a coefficient of variation (due to subjective operator actions) of 0.9% (based on 20 patient studies, three operators, and two trials) for volume and a mean false-negative volume fraction of 1.3%, with a 95% confidence interval of 0%-2.8% (based on ten patient studies).

PMID:
9368115
DOI:
10.1109/42.640750
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center