Send to

Choose Destination
Prog Neurobiol. 1997 Oct;53(3):293-329.

Slow eye movements.

Author information

Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik, Tübingen, Germany.


Monkeys and humans are able to perform different types of slow eye movements. The analysis of the eye movement parameters, as well as the investigation of the neuronal activity underlying the execution of slow eye movements, offer an excellent opportunity to study higher brain functions such as motion processing, sensorimotor integration, and predictive mechanisms as well as neuronal plasticity and motor learning. As an example, since there exists a tight connection between the execution of slow eye movements and the processing of any kind of motion, these eye movements can be used as a biological, behavioural probe for the neuronal processing of motion. Global visual motion elicits optokinetic nystagmus, acting as a visual gaze stabilization system. The underlying neuronal substrate consists mainly of the cortico-pretecto-olivo-cerebellar pathway. Additionally, another gaze stabilization system depends on the vestibular input known as the vestibulo-ocular reflex. The interactions between the visual and vestibular stabilization system are essential to fulfil the plasticity of the vestibulo-ocular reflex representing a simple form of learning. Local visual motion is a necessary prerequisite for the execution of smooth pursuit eye movements which depend on the cortico-pontino-cerebellar pathway. In the wake of saccades, short-latency eye movements can be elicited by brief movements of the visual scene. Finally, eye movements directed to objects in different planes of depth consist of slow movements also. Although there is some overlap in the neuronal substrates underlying these different types of slow eye movements, there are brain areas whose activity can be associated exclusively with the execution of a special type of slow eye movement.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center