Format

Send to

Choose Destination
Biosci Biotechnol Biochem. 1997 Oct;61(10):1729-33.

A protein factor is essential for in situ reactivation of glycerol-inactivated adenosylcobalamin-dependent diol dehydratase.

Author information

1
Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University, Japan.

Abstract

The adenosylcobalamin-dependent diol dehydratase of Klebsiella oxytoca undergoes suicidal inactivation by glycerol during catalysis involving irreversible dissociation of the Co-C bond of the coenzyme. The glycerol-inactivated holoenzyme in permeabilized cells (in situ) of E. coli harboring a plasmid containing the diol dehydratase genes and their flanking regions was rapidly reactivated in the presence of free AdoCbl, ATP, and Mg2+. beta,gamma-Methylene ATP was not able to replace ATP. Inactive complexes of the enzyme with aqCbl, CN-Cbl, and PeCbl were activated in situ in the presence of AdoCbl, ATP, and Mg2+, but the complex with AdePeCbl was not. These results suggest that the inactivated holoenzyme is reactivated in situ in the presence of ATP and Mg2+ by exchange of the inactivated coenzyme lacking the adenine moiety for free intact AdoCbl. The in situ reactivation was also observed when an analog lacking the alpha-ribose moiety of the nucleotide loop was used as coenzyme. The results with a recombinant E. coli strains carrying a deletion mutant plasmid demonstrate that certain protein(s) encoded by the 3'-flanking region of the diol dehydratase genes are essential for the in situ reactivation of inactivated diol dehydratase.

PMID:
9362119
DOI:
10.1271/bbb.61.1729
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center