Send to

Choose Destination
Biochem Pharmacol. 1997 Oct 1;54(7):755-9.

DNA topoisomerase II rescue by catalytic inhibitors: a new strategy to improve the antitumor selectivity of etoposide.

Author information

Laboratory of Experimental Medical Oncology, Finsen Center, Copenhagen, Denmark.


The nuclear enzyme DNA topoisomerase II (topo II) is the target of important antitumor agents such as etoposide. Recent work has classified topo II targeting drugs into either topo II poisons that act by stabilizing enzyme-DNA cleavable complexes leading to DNA breaks, or topo II catalytic inhibitors that act at stages in the catalytic cycle of the enzyme where both DNA strands are intact and, therefore, do not cause DNA breaks. Accordingly, catalytic inhibitors are known to abrogate DNA damage and cytotoxicity caused by topo II poisons. In this commentary, we have focused on the possibilities of enabling high-dose therapy with the topo II poison etoposide by protection of normal tissue with catalytic inhibitors, analogous to folinic acid rescue in high-dose methotrexate treatment. Thus, we have demonstrated recently that (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) enabled a 3- to 4-fold dose escalation of etoposide in mice. Two high-dose etoposide models are described, namely use of the weak base chloroquine in tumors with acidic extracellular pH and targeting of CNS tumors with protection of normal tissue by the bisdioxopiperazine ICRF-187. In conclusion, high supralethal doses of topo II poisons in combination with catalytic inhibitor protection form a new strategy to improve the antitumor selectivity of etoposide and other topo II poisons. Such an approach may be used to overcome problems with drug resistance and drug penetration.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center