Format

Send to

Choose Destination
Eur J Immunol. 1997 Sep;27(9):2123-32.

Qa-1 interaction and T cell recognition of the Qa-1 determinant modifier peptide.

Author information

1
MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London, GB.

Abstract

The peptide-binding properties of the nonclassical major histocompatibility complex (MHC) class 1b molecule Qa-1 were investigated using a transfected hybrid molecule composed of the alpha 1 and alpha 2 domains of Qa-1b and the alpha 3 domain of H-2Db. This allowed the use of a monoclonal antibody directed against H-2Db whilst retaining the peptide-binding groove of Qa-1b. By comparison with classical MHC class I molecules, intracellular maturation of the chimeric molecule was inefficient with weak intracellular association with beta 2-microglobulin. However, at the cell surface the hybrid molecules were stably associated with beta 2-microglobulin and were recognized by cytotoxic T lymphocyte (CTL) clones specific for the Qa-1b-presented peptide Qdm (AMAPRTLLL). A whole-cell binding assay was used to determine which residues of Qdm were important for binding to Qa-1b and CTL clones served to identify residues important for T cell recognition. Substitutions at position 1 and 5 did not reduce the efficiency of binding and had little effect on CTL recognition. In contrast, substitutions at position 9 resulted in loss of MHC class I binding. Mass spectrometric analysis of peptides eluted from immunopurified Qa-1b/Db molecules indicated that Qdm was the dominant peptide. The closely related peptide, AMVPRTLLL, which is derived from the signal sequence of H-2Dk, was also present, although it was considerably less abundant. The mass profile suggested the presence of additional peptides the majority of which consisted of eight to ten amino acid residues. Finally, the finding that a peptide derived from Klebsiella pneumoniae can bind raises the possibility that this non-classical MHC class I molecule may play a role in the presentation of peptides of microorganisms.

PMID:
9341749
DOI:
10.1002/eji.1830270902
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center