Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 Oct 24;272(43):26871-8.

A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae.

Author information

School of Pure & Applied Biology, University of Wales, Cardiff CF1 3TL, United Kingdom.


The metabolism of leucine to isoamyl alcohol in yeast was examined by 13C nuclear magnetic resonance spectroscopy. The product of leucine transamination, alpha-ketoisocaproate had four potential routes to isoamyl alcohol. The first, via branched-chain alpha-keto acid dehydrogenase to isovaleryl-CoA with subsequent conversion to isovalerate by acyl-CoA hydrolase operates in wild-type cells where isovalerate appears to be an end product. This pathway is not required for the synthesis of isoamyl alcohol because abolition of branched-chain alpha-keto acid dehydrogenase activity in an lpd1 disruption mutant did not prevent the formation of isoamyl alcohol. A second possible route was via pyruvate decarboxylase; however, elimination of pyruvate decarboxylase activity in a pdc1 pdc5 pdc6 triple mutant did not decrease the levels of isoamyl alcohol produced. A third route utilizes alpha-ketoisocaproate reductase (a novel activity in Saccharomyces cerevisiae) but with no role in the formation of isoamyl alcohol from alpha-hydroxyisocaproate because cell homogenates could not convert alpha-hydroxyisocaproate to isoamyl alcohol. The final possibility was that a pyruvate decarboxylase-like enzyme encoded by YDL080c appears to be the major route of decarboxylation of alpha-ketoisocaproate to isoamyl alcohol although disruption of this gene reveals that at least one other unidentified decarboxylase can substitute to a minor extent.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center