Send to

Choose Destination
Genetics. 1997 Oct;147(2):451-65.

Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes.

Author information

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.


The Saccharomyces cerevisiae transcription factor Spt20/Ada5 was originally identified by mutations that suppress Ty insertion alleles and by mutations that suppress the toxicity caused by Gal4-VP16 overexpression. Here we present evidence for physical associations between Spt20/Ada5 and three other Spt proteins, suggesting that they exist in a complex. A related study demonstrates that this complex also contains the histone acetyltransferase, Gcn5, and Ada2. This complex has been named SAGA (Spt/Ada/Gcn5 acetyltransferase). To identify functions that genetically interact with SAGA, we have screened for mutations that cause lethality in an spt20 delta/ada5 delta mutant. Our screen identified mutations in SNF2, SIN4, and GAL11. These mutations affect two known transcription complexes: Snf/Swi, which functions in nucleosome remodeling, and Srb/mediator, which is required for regulated transcription by RNA polymerase II. Systematic analysis has demonstrated that spt20 delta/ada5 delta and spt7 delta mutations cause lethality with every snf/swi and srb/mediator mutation tested. Furthermore, a gcn5 delta mutation causes severe sickness with snf/swi mutations, but not with srb/mediator mutations. These findings suggest that SAGA has multiple activities and plays critical roles in transcription by RNA polymerase II.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center