Send to

Choose Destination
Oncogene. 1997 Sep 18;15(12):1461-70.

Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols.

Author information

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA.


The mechanism by which Bcl-2 oncogene expression inhibits radiation-induced apoptosis has been investigated in two mouse lymphoma cell lines: line LY-as is radiation sensitive, displays substantial radiaton-induced apoptosis, and expresses low levels of Bcl-2; line LY-ar is radiation-resistant, displays a low apoptosis propensity, and expresses 30-fold higher amount of Bcl-2 protein than does the sensitive line. We observed that upon incubation in cystine/methionine-free (C/M-) medium, radiation-induced apoptosis in the LY-ar cells was restored to levels comparable to that seen in the LY-as cells. lntracellular glutathione (GSH) concentrations in LY-ar cells incubated in C/M- medium plummeted to 50% of control values within 2 h. LY-ar cells treated with diethyl maleate (DEM) or diamide, agents that deplete cellular thiols, had increased susceptibility to radiation-induced apoptosis in a manner similar to C/M- medium. These results are consistent with the general idea that Bcl-2 expression blocks apoptosis through an antioxidant pathway that involves cellular thiols. That Bcl-2-expressing tumor cells can be sensitized by exogeneous agents that modify cellular thiols offers strategies for overcoming such resistance.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center