Format

Send to

Choose Destination
Neuroscience. 1997 Dec;81(4):1099-110.

Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease.

Author information

1
Amgen Inc., Thousand Oaks, CA 91320, USA.

Abstract

The present study determined the effects of intraventricularly administered glial cell line-derived neurotrophic factor on the behavioral and neurochemical sequelae of unilateral excitotoxic lesions of the striatum. Distinct asymmetrical rotational behavior in response to peripheral administration of amphetamine (5 mg/kg) was noted one and two weeks following injections of quinolinic acid (200 nmol) into two sites in the left striatum. In rats given a single intraventricular injection of glial cell line-derived neurotrophic factor (10-1000 micrograms) 30 min before the toxin, amphetamine-induced rotational behavior was significantly attenuated. Analysis of Nissl-stained coronal sections showed marked neuronal loss in the striatum ipsilateral to the quinolinic acid injections, which was at least partially prevented by glial cell line-derived neurotrophic factor D1 and D2 dopamine binding sites in the striatum, the majority of which are localized to subpopulations of GABAergic neurons, were decreased to a similar extent by quinolinic acid. Moreover, the reduction was attenuated by glial cell line-derived neurotrophic factor treatment to a similar degree, suggesting that the two subpopulations of GABAergic striatal output neurons are equally vulnerable to excitotoxic damage. Concomitant changes in neurotransmitter function as a result of the lesion were also observed: [3H]GABA uptake into striatal target tissues (globus pallidus and substantia nigra) was considerably reduced in the lesioned compared to the contralateral unlesioned tissues, as were [3H]choline and [3H]dopamine uptake into striatal synaptosomes. Similarly, striatal choline acetyltransferase activity was decreased by the lesion. Decrements in neuropeptide levels of similar magnitude were evident ipsilateral to the lesion; substance P, met-enkephalin and dynorphin A contents in the globus pallidus and substantia nigra were significantly reduced. Striatal somatostatin and neuropeptide Y levels were not altered. All of the neurochemical deficits induced by striatal quinolinic acid lesions were attenuated by intraventricular delivery of glial cell line-derived neurotrophic factor. Continuous intraventricular infusion of this trophic factor (10 micrograms/day) over a two-week period did not afford notable improvement compared to the single injection of 10 micrograms. In contrast, continuous infusion of brain-derived neurotrophic factor (10 micrograms/day) directly into the striatum did not affect any of the neurochemical parameters studied. However, neurotrophin-3 (10 micrograms/day) delivery into the striatum significantly increased [3H]GABA uptake, but only modestly affected [3H]choline uptake. The results indicate that glial cell line-derived neurotrophic factor counteracts neuronal damage induced by a striatal excitotoxic insult and support its potential use as a treatment for central nervous system disorders that may be a consequence of excitotoxic processes, such as Huntington's disease.

PMID:
9330371
DOI:
10.1016/s0306-4522(97)00079-1
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center