Format

Send to

Choose Destination
Am J Vet Res. 1997 Oct;58(10):1078-82.

Biomechanical characterization of passive laxity of the hip joint in dogs.

Author information

1
Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA.

Abstract

OBJECTIVE:

To investigate the in vitro load/displacement characteristics of the hip joints in dogs as a function of joint position.

SAMPLE POPULATION:

10 hip joints from 5 healthy dogs.

PROCEDURE:

A material test system was used to generate load/displacement curves for each joint. Joints were mounted in a custom-designed jig that held the joint in fixed anatomic orientations while plotting displacement and corresponding applied loads. All hips were cycled between 40 N of compression and 80 N of distraction. Each hip was tested at 10 degrees increments from 30 degrees flexion to 70 degrees extension.

RESULTS:

When the hips were in a neutral orientation (approximately a standing position), load/displacement curves were characteristically sigmoidal (tri-phasic), indicating that, in this position, displacement was not highly dependent on load. The curves had a central low-stiffness region in which most of the lateral displacement took place. In contrast, when hips were positioned at the extremes of flexion and extension, this central, low-stiffness region was less distinct, and load/displacement curves were more linear, indicating a proportional relation between load and displacement. The load/displacement curve of 1 hip joint in the study deviated markedly from the others in a pattern consistent with cavitation of the synovial fluid.

CONCLUSIONS:

When the hip joint is positioned in a neutral position, load-displacement behavior is sigmoidal, whereas when the hip joint is in an extended position, load/displacement behavior is more linear.

CLINICAL RELEVANCE:

Establishing load/displacement behavior of the hip joints in dogs was an important exercise in establishing the position for and estimating the repeatability of a clinical stress-radiographic method for quantitating joint laxity in dogs.

PMID:
9328658
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center