Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1997 Sep 26;272(3):336-47.

Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences.

Author information

Division of Chemistry, California Institute of Technology, Pasadena, CA 91125, USA.


Sets of genes improved by directed evolution can be recombined in vitro to produce further improvements in protein function. Recombination is particularly useful when improved sequences are available; costs of generating such sequences, however, must be weighed against the costs of further evolution by sequential random mutagenesis. Four genes encoding para-nitrobenzyl (pNB) esterase variants exhibiting enhanced activity were recombined in two cycles of high-fidelity DNA shuffling and screening. Genes encoding enzymes exhibiting further improvements in activity were analyzed in order to elucidate evolutionary processes at the DNA level and begin to provide an experimental basis for choosing in vitro evolution strategies and setting key parameters for recombination. DNA sequencing of improved variants from the two rounds of DNA shuffling confirmed important features of the recombination process: rapid fixation and accumulation of beneficial mutations from multiple parent sequences as well as removal of silent and deleterious mutations. The five to sixfold further enhancement of total activity towards the para-nitrophenyl (pNP) ester of loracarbef was obtained through recombination of mutations from several parent sequences as well as new point mutations. Computer simulations of recombination and screening illustrate the trade-offs between recombining fewer parent sequences (in order to reduce screening requirements) and lowering the potential for further evolution. Search strategies which may substantially reduce screening requirements in certain situations are described.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center