Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 Oct 3;272(40):25353-9.

Sites of interaction between kinase-related protein and smooth muscle myosin.

Author information

Laboratory of Molecular Cardiology, NHLBI, Bethesda, Maryland 20892, USA.


Kinase-related protein, also known as KRP or telokin, is an independently expressed protein product derived from a gene within the gene for myosin light chain kinase (MLCK). KRP binds to unphosphorylated smooth muscle myosin filaments and stabilizes them against ATP-induced depolymerization in vitro. KRP competes with MLCK for binding to myosin, suggesting that both proteins bind to myosin by the KRP domain (Shirinsky, V. P., Vorotnikov, A. V., Birukov, K. G., Nanaev, A. K., Collinge, M., Lukas, T. J., Sellers, J. R., and Watterson, D. M. (1993) J. Biol. Chem. 268, 16578-16583). In this study, we investigated which regions of myosin and KRP interact in vitro. Using cosedimentation assays, we determined that KRP binds to unphosphorylated myosin with a stoichiometry of 1 mol of KRP/1 mol of myosin and an affinity of 5.5 microM. KRP slows the rate of proteolytic cleavage of the head-tail junction of heavy meromyosin by papain and chymotrypsin, suggesting it is binding to this region of myosin. In addition, competition experiments, using soluble headless fragments of nonmuscle myosin, confirmed that KRP interacts with the regulatory light chain binding region of myosin. The regions important for KRP's binding to myosin were investigated using bacterially expressed KRP truncation mutants. We determined that the acid-rich sequence between Gly138 and Asp151 of KRP is required for high affinity myosin binding, and that the amino terminus and beta-barrel regions weakly interact with myosin. All KRP truncations, at concentrations comparable to their KD values, exhibited some stabilization of myosin filaments against ATP depolymerization in vitro, suggesting that KRP's ability to stabilize myosin filaments is commensurate with its myosin binding affinity. KRP weakened the Km but not the Vmax of phosphorylation of myosin by MLCK, demonstrating that bound KRP does not prevent MLCK from activating myosin.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center