Send to

Choose Destination
J Virol. 1997 Oct;71(10):7436-41.

A human primary T-lymphocyte-derived human immunodeficiency virus type 1 Tat-associated kinase phosphorylates the C-terminal domain of RNA polymerase II and induces CAK activity.

Author information

Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, D.C. 20037, USA.


Tat protein mediates transactivation of human immunodeficiency virus type 1 (HIV-1), which results in more-efficient transcript elongation. Since phosphorylation of C-terminal domain (CTD) of RNA polymerase II correlates with its enhanced processivity, we studied the properties of a Tat-associated CTD kinase derived from mitogenically stimulated human primary T lymphocytes (TTK). TTK binds to full-length Tat and specifically phosphorylates CTD and CDK2. This dual kinase activity is characteristic of CDK-activating kinase (CAK). The CTD kinase activity is induced upon mitogenic stimulation of primary T lymphocytes. Fractionation of T-cell lysate demonstrates that Tat-associated CTD kinase activity elutes in two peaks. About 60% of Tat-associated CTD kinase copurifies with CDK2 kinase activity and contains the CAK components CDK7 and cyclin H. The rest of Tat-associated kinase is free of CDK2 kinase activity and the CAK components and thus may represent a novel CTD kinase. The kinase activities of TTK are blocked by the adenosine analog 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) as well as by the kinase inhibitor H8 at concentrations known to block transcript elongation. Importantly, the Tat-associated kinase markedly induced CAK. We suggest that the mechanism of Tat-mediated processive transcription of the HIV-1 promoter includes a Tat-associated CAK activator.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center