Send to

Choose Destination
See comment in PubMed Commons below
Naunyn Schmiedebergs Arch Pharmacol. 1997 Sep;356(3):312-20.

SB-216641 and BRL-15572--compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors.

Author information

  • 1Department of Neuroscience, SmithKline Beecham Pharmaceuticals, Harlow, Essex, UK.


Despite only modest homology between h5-HT1B and h5-HT1D receptor amino acid sequences, these receptors display a remarkably similar pharmacology. To date there are few compounds which discriminate between these receptor subtypes and those with some degree of selectivity, such as ketanserin, have greater affinity for other 5-HT receptor subtypes. We now report on two compounds, SB-216641 (N-[3-(2-dimethylamino) ethoxy-4-methoxyphenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide) and BRL-15572 3-[4-(3-chlorophenyl) piperazin-1-yl]-1,1-diphenyl-2-propanol), which display high affinity and selectivity for h5-HT1B and h5-HT1D receptors, respectively. In receptor binding studies on human receptors expressed in CHO cells, SB-216641 has high affinity (pKi = 9.0) for h5-HT1B receptors and has 25-fold lower affinity at h5-HT1D receptors. In contrast, BRL-15572 has 60-fold higher affinity for h5-HT1D (pKi = 7.9) than 5-HT1B receptors. Similar affinities for these compounds were determined on native tissue 5-HT1B receptors in guinea-pig striatum. Functional activities of SB-216641 and BRL-15572 were measured in a [35S]GTPgammaS binding assay and in a cAMP accumulation assay on recombinant h5-HT1B and h5-HT1D receptors. Both compounds were partial agonists in these high receptor expression systems, with potencies and selectivities which correlated with their receptor binding affinities. In the cAMP accumulation assay, results from pK(B) measurements on the compounds again correlated with receptor binding affinities (SB-216641, pK(B) = 9.3 and 7.3; BRL-15572, pK(B) = <6 and 7.1, for h5-HT1B and h5-HT1D receptors respectively). These compounds will be useful pharmacological agents to characterise 5-HT1B and 5-HT1D receptor mediated responses.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center