Send to

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 1997 Oct;6(11):1791-801.

Epigenetic variation illustrated by DNA methylation patterns of the fragile-X gene FMR1.

Author information

Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. or


Genomic methylation patterns of mammals can vary among individuals and are subject to dynamic changes during development. In order to gain a better understanding of this variation, we have analyzed patterns of cytosine methylation within a 200 bp region at the CpG island of the human FMR1 gene from leukocyte DNA. FMR1 is normally methylated during inactivation of the X chromosome in females and it is also methylated and inactivated upon expansion of CGG repeats in fragile-X syndrome. Patterns of methylation (epigenotypes) were determined by the sequencing of bisulfite-treated alleles from normal males and females and alleles from a family of five brothers who are methylation mosaics and are affected to various degrees by the fragile-X syndrome. Our data indicate that: (i) methylation of individual CpG cytosines is strikingly variable in hypermethylated epigenotypes obtained from a single individual, suggesting that maintenance of cytosine methylation is a dynamic process; (ii) methylation of non-CpG cytosines in the region studied may occur but is rare; (iii) mosaicism of methylation in the analyzed fragile-X males is remarkably similar to that found for the active X and inactive X alleles in normal females, suggesting that the methylation mosaicism of some fragile-X males reflects similar on and off states of FMR1 expression that exist in normal females; (iv) hypermethylation is slightly more pronounced on fragile-X alleles than on normal inactive X alleles of females; (v) the general dichotomy of hypo- and hypermethylated alleles persisted over the 5 year period that separated samplings of the fragile-X males; (vi) methylation variability was most pronounced at a consensus binding sequence for the alpha-PAL transcription factor, a sequence that may play a role in regulating expression of FMR1.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center