Send to

Choose Destination
J Mol Biol. 1997 Sep 19;272(2):266-75.

The effect of point mutations on the free energy of transmembrane alpha-helix dimerization.

Author information

Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8114, USA.


Glycophorin A forms homodimers through interaction of the single, helical transmembrane domains of the monomers. The dimers are stable in sodium dodecylsulfate (SDS), permitting a number of studies that have identified a critical motif of residues that mediates dimer formation. We have used analytical ultracentrifugation to measure the energy of dimerization in a non-denaturing detergent solution and have observed the changes in energy arising from two of the mutants previously studied. Use of the detergent pentaoxyethylene octyl ether (C8E5) is a great advantage, since its micelles are neutrally buoyant and the detergent allows a reversible association to occur between monomer and dimer states of the glycophorin A transmembrane helices during the time-scale of sedimentation equilibrium. Use of this detergent in analytical ultracentrifugation may enable a wide range of studies of molecular association events in membrane proteins. We find that the glycophorin A transmembrane helix dimerizes with a dissociation constant of 240(+/-50) nM, corresponding to a free energy of dissociation of 9.0(+/-0.1) kcal mol-1. Point mutants that were found to be disruptive in SDS (L75A, I76A) reduced the dimer affinity in the C8E5 detergent environment (Kd=1.7(+/-0.2) microM and 4.2(+/-0.9) microM, respectively). Thus, the earlier findings are placed on a quantitative, relative energy scale of association by our measurements. Molecular modeling and simulations suggest that the energy differences can be accounted for as changes in van der Waals interactions between helices.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center