Format

Send to

Choose Destination
See comment in PubMed Commons below
Xenobiotica. 1997 Aug;27(8):853-64.

Selective inhibition and induction of CYP activity discriminates between the isoforms responsible for the activation of butylated hydroxytoluene and naphthalene in mouse lung.

Author information

  • 1MRC Toxicology Unit, Leicester, UK.

Abstract

1. Selective induction and inhibition experiments have been used to identify the cytochrome P450 (CYP) isoforms responsible for butylated hydroxytoluene (BHT) bioactivation in mouse lung. 2. Pre-treatment of BALB/c mice with O,O,O-trimethylphosphorothioate (OOOMeP(S)), which prevented all the signs of toxicity observed following BHT treatment, inhibited the pulmonary activity of pentoxyresorufin O-dealkylase (PROD) and coumarin hydroxylase but not 4-nitrophenol hydroxylase. 3. Pulmonary coumarin hydroxylase activity was greater in DBA than in BALB/c mice but the severity of BHT-induced lung injury was similar. 4. Pre-treatment with pyrazole, which exacerbated BHT-induced lung injury, did not affect pulmonary coumarin hydroxylase or 4-nitrophenol hydroxylase activity but increased that of PROD. 5. Pre-treatment with OOOMeP(S) prevented the lethargy and weight-loss associated with naphthalene poisoning but not the pulmonary injury. Pre-treatment with pyrazole did not exacerbate naphthalene-induced injury. 6. Members of both CYP2F and 2B sub-families have been shown to exhibit PROD activity and 2F2 activates naphthalene in mouse lung. The current studies, however, indicate that 2F2 is unlikely to be a significant component of PROD activity in mouse lung. 2F2, like coumarin hydroxylase (2A5) and 4-nitrophenol hydroxylase (2E1), is not responsible for the pulmonary activation of BHT, which is largely attributable to an isoform of 2B, probably 2B10.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Write to the Help Desk