Format

Send to

Choose Destination
Biophys J. 1997 Sep;73(3):1402-9.

The S5-S6 linker of repeat I is a critical determinant of L-type Ca2+ channel conductance.

Author information

1
Department of Anatomy and Neurobiology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA.

Abstract

The alpha1-subunits of the skeletal and cardiac L-type calcium channels (L-channels) contain nearly identical pore regions (P-regions) in each of the four internal homology repeats. In spite of this high conservation of the P-regions, native skeletal L-channels exhibit a unitary conductance that is only about half that of native cardiac L-channels. To identify structural determinants of this difference in L-channel conductance, we have characterized unitary activity in cell-attached patches of dysgenic myotubes expressing skeletal, cardiac, and chimeric L-channel alpha1-subunits. Our results demonstrate that the S5-S6 linker of repeat I (IS5-IS6 linker) is a critical determinant of the difference in skeletal and cardiac unitary conductance. The unitary conductances attributable to the wild-type skeletal (CAC6; approximately 14 pS) and cardiac (CARD1; approximately 25 pS) alpha1-subunits expressed in dysgenic myotubes are identical to those observed in native tissues. Chimeric alpha1-subunits containing skeletal sequence for the first internal repeat and all of the putative intracellular loops (SkC15), the IS5-IS6 linker and the intracellular loops (SkC51), or only the IS5-IS6 linker (SkC49) each exhibit a low, skeletal-like unitary conductance (< or = 17 pS). Constructs in which the IS5-IS6 linker is of cardiac origin (CARD1 and CSk9) display cardiac-like conductance (approximately 25 pS). Unitary conductance and the rate of channel activation are apparently independent processes, since both SkC51 and SkC49 exhibit low, skeletal-like conductance and rapid, cardiac-like rates of ensemble activation. These results demonstrate that the IS5-IS6 linker strongly influences the single channel conductance of L-channels in a manner that is independent from the rate of channel activation.

PMID:
9284307
PMCID:
PMC1181039
DOI:
10.1016/S0006-3495(97)78172-4
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center