Send to

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 1997 Jul;25(2):295-302.

The use of flash photolysis for a high-resolution temporal and spatial analysis of bacterial chemotactic behaviour: CheZ is not always necessary for chemotaxis.

Author information

Department of Microbiology and Immunology, The University of Illinois at Chicago, 60612-7344, USA.


The purpose of this work was to develop a high-resolution analysis of behaviour as an assay of the physiological consequences of mutations in the che genes and also to examine the role of CheZ in chemotaxis. Recent advances in flash photolysis have made it possible to expose cells to an unstable chemical gradient created by a square-wave increase in attractant concentration. The response of individual cells can be tracked in the order of milliseconds using real-time motion analysis. The tumble frequency of wild-type Escherichia coli exposed to photoreleased aspartate falls very quickly to smooth-swimming levels, and the swimming speed of these cells rises. As a consequence of these behavioural changes, there is an increase in the number of bacteria present in the centre of the flashed area, that is the bacteria's response to the transient gradient generated by flash photolysis was to swim into the centre of the flash area. This allowed the rapid quantitative measurement of chemotaxis. Deletion of various che genes resulted in predictable changes in chemotactic behaviour. cheZ null mutants are non-chemotactic when measured by classical techniques but demonstrate a definite chemotactic response to photoreleased attractant.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center