Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Cancer. 1997 Apr;33(5):710-5.

Multiple pathways to cellular senescence: role of telomerase repressors.

Author information

  • 1Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Japan.

Abstract

Telomeres progressively shorten with age in somatic cells in culture and in vivo because DNA replication results in the loss of sequences at the 5' ends of double-stranded DNA. Whereas somatic cells do not express the enzyme, telomerase, which adds repeated telomere sequences to chromosome ends, telomerase activity is detected in immortalised and tumour cells in vitro and in primary tumour tissues. This represents an important difference between normal cells and cancer cells, suggesting that telomere shortening causes cellular senescence. Hybrids between immortal cells and normal cells senesce, indicating that immortal cells have lost, mutated or inactivated genes that are required for the programme of senescence in normal cells. Genes involved in the senescence programme have been mapped to over ten different genetic loci using microcell fusion to introduce human chromosomes and restore the senescence programme. Multiple pathways of cellular senescence have also been demonstrated by chromosome transfer, indicating that the functions of the mapped senescence genes are probably different. One possibility is that one or more of these senescence genes may suppress telomerase activity in immortal cells, resulting in telomere shortening and cellular senescence. To test this hypothesis, telomerase activity and the length of terminal restriction fragments (TRFs) have been examined in microcell hybrids. Re-introduction of a normal chromosome 3 into the renal cell carcinoma cell line RCC23, which has the short arm of chromosome 3, restored cellular senescence. The loss of indefinite growth potential was associated with the loss of telomerase activity and shortening of telomeres in the RCC cells containing the introduced chromosome 3. However, microcell hybrids that escaped from senescence and microcell hybrids with an introduced chromosome 7 or 11 maintained telomere lengths and telomerase activity similar to the parental RCC23. Thus, restoration of cellular senescence by chromosome 3 is associated with repression of telomerase function in RCC cells. This evidence suggests that telomerase suppression is one of several pathways involved in immortalisation.

PMID:
9282109
DOI:
10.1016/S0959-8049(97)00090-7
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center