Format

Send to

Choose Destination
See comment in PubMed Commons below
Virology. 1997 Sep 1;235(2):241-51.

The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction.

Author information

1
Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, 60611, USA.

Abstract

The Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) blocks B-cell receptor (BCR) signal transduction in EBV-immortalized B lymphocytes in vitro. The cytoplasmic amino-terminal domain of LMP2A contains an immunoreceptor tyrosine activation motif (ITAM). ITAMs consist of paired tyrosine and leucine residues and play a central role in signal transduction of the BCR and the T-cell receptor (TCR). To investigate the importance of the LMP2A ITAM, two EBV recombinants were constructed, each containing a tyrosine-to-phenylalanine point mutation at amino acid 74 or 85 within the ITAM of LMP2A. Tyrosine phosphorylation, calcium mobilization, and induction of BZLF1 expression were no longer blocked in the LMP2A ITAM mutant LCLs following BCR cross-linking. In addition, the Syk protein tyrosine kinase (PTK) was unable to bind LMP2A in unstimulated LCLs infected with either of the LMP2A ITAM mutants. Analysis of Syk phosphorylation before and after BCR cross-linking in the LMP2A mutant ITAM LCLs compared with wild-type EBV LCLs indicates a specific role of the LMP2A ITAM on the LMP2A-mediated negative effect on the Syk PTK. These data indicate the importance of the LMP2A ITAM motif in the LMP2A-mediated block on BCR signal transduction and position the role of the Syk PTK as being central to the function of LMP2A.

PMID:
9281504
DOI:
10.1006/viro.1997.8690
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center