Format

Send to

Choose Destination
See comment in PubMed Commons below
Carcinogenesis. 1997 Aug;18(8):1505-10.

Suppression of testosterone and estradiol-17beta-induced dysplasia in the dorsolateral prostate of Noble rats by bromocriptine.

Author information

1
Department of Biology, Tufts University, Medford, MA 02155, USA.

Abstract

We, and others, have previously described the histological changes that occur in the prostate gland of intact Noble (NBL) rats following prolonged hormonal treatment. Dysplasia, a pre-neoplastic lesion, develops specifically in the dorsolateral prostates (DLPs) of NBL rats treated for 16 weeks with a combined regimen of testosterone (T) and estradiol-17beta (E2) (T + E2-treated rats). Concurrent with DLP dysplasia induction, the dual hormone regimen also elicits hyperprolactinemia, in addition to an elevation of nuclear type II estrogen binding sites (type II EBS), no alteration in estrogen receptors (ER), and marked epithelial cell proliferation in the dysplastic foci. The aim of this study was to investigate whether the dual hormone action is mediated via E2-induced hyperprolactinemia. Bromocriptine (Br), at a dose of 4 mg/kg body wt per day, was used to suppress pituitary prolactin (PRL) release. Serum PRL levels were lowered from values of 341 +/- 50 ng/ml in T + E2-treated rats to 32 +/- 10 ng/ml in Br co-treated animals. The latter values were comparable to those in untreated control rats. In addition, Br co-treatment effectively inhibited the evolution of dysplasia (six out of eight rats) and the often associated inflammation (five out of eight rats) in most animals. In contrast, Br co-treatment did not suppress the T + E2-induced type II EBS elevation nor alter ER levels in the DLPs of these rats, when compared with T + E2-treated rats. These data extend the many previous studies that have detailed marked influences of PRL on rat prostatic functions. However, the current study is the first to implicate PRL in prostatic dysplasia induction in vivo.

PMID:
9276623
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center