Format

Send to

Choose Destination
Cancer Res. 1997 Aug 15;57(16):3569-76.

Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response.

Author information

1
Laboratory of Biochemical Physiology, National Cancer Institute, Frederick Cancer Research and Development Center, NIH, Maryland 21702, USA. lij@ncifcrf.gov

Abstract

Cross-coupling of active protein-1 (AP-1) and nuclear factor (NF)-kappaB has been reported. In the present study, we investigated the possibility that both of these two transcription factors might contribute to the process of tumor promoter-induced transformation. To establish a stable reporter cell system, two reporter genes were stably transfected into a JB6 mouse tumor promotion-sensitive (P+) cell line: a luciferase reporter controlled by a collagenase AP-1 sequence and a chloramphenicol acetyltransferase reporter controlled by an interleukin 6 NF-kappaB sequence. This double-reporter cell line maintained the phenotype of tumor promotion sensitivity and was able to report basal or induced AP-1 and NF-kappaB transactivation. The cytokine tumor promoter tumor necrosis factor (TNF)-alpha transactivated NF-kappaB and AP-1 for both DNA binding and transcriptional activity. Pyrrolidine dithiocarbamate, an antioxidant that acts as an NF-kappaB inhibitor, efficiently inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA) or TNF-alpha induced NF-kappaB as well as AP-1 transactivation and cell transformation, suggesting dependency of transformation on both transcription factors. The AP-1 transrepressing-retinoid SR11302 transrepressed AP-1 and cell transformation when these were TPA induced but not when TNF-alpha induced, indicating different signaling pathways for TNF-alpha and TPA. Supershift electrophoresis mobility shift assay revealed that Jun B and c-Jun were absent from the AP-1/DNA complex following TNF-alpha but present following TPA treatment. Together, these results suggest that both AP-1 and NF-kappaB activation may be required for transformation whether induced by TPA or by TNF, and the differential sensitivity of TPA and TNF-alpha-induced transformation to inhibition by a retinoid might be explained by differences in the composition of the DNA-bound AP-1 complexes.

PMID:
9270030
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center