Send to

Choose Destination
See comment in PubMed Commons below
Scanning. 1997 Aug;19(5):361-7.

The fine structure of fenestrated adrenocortical capillaries revealed by in-lens field-emission scanning electron microscopy and scanning transmission electron microscopy.

Author information

Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.


Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin metal coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the "flower-like" structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center