Format

Send to

Choose Destination
J Clin Invest. 1997 Aug 15;100(4):931-41.

Regulation of glucose homeostasis in humans with denervated livers.

Author information

1
Department of Internal Medicine, Istituto Scientifico H San Raffaele, University of Milan, 20132 Milan, Italy.

Abstract

The liver plays a major role in regulating glucose metabolism, and since its function is influenced by sympathetic/ parasympathetic innervation, we used liver graft as a model of denervation to study the role of CNS in modulating hepatic glucose metabolism in humans. 22 liver transplant subjects were randomly studied by means of the hyperglycemic/ hyperinsulinemic (study 1), hyperglycemic/isoinsulinemic (study 2), euglycemic/hyperinsulinemic (study 3) as well as insulin-induced hypoglycemic (study 4) clamp, combined with bolus-continuous infusion of [3-3H]glucose and indirect calorimetry to determine the effect of different glycemic/insulinemic levels on endogenous glucose production and on peripheral glucose uptake. In addition, postabsorptive glucose homeostasis was cross-sectionally related to the transplant age (range = 40 d-35 mo) in 4 subgroups of patients 2, 6, 15, and 28 mo after transplantation. 22 subjects with chronic uveitis (CU) undergoing a similar immunosuppressive therapy and 35 normal healthy subjects served as controls. The results showed that successful transplantation was associated with fasting glucose concentration and endogenous glucose production in the lower physiological range within a few weeks after transplantation, and this pattern was maintained throughout the 28-mo follow-up period. Fasting glucose (4. 55+/-0.06 vs. 4.75+/-0.06 mM; P = 0.038) and endogenous glucose production (11.3+/-0.4 vs. 12.9+/-0.5 micromol/[kg.min]; P = 0.029) were lower when compared to CU and normal patients. At different combinations of glycemic/insulinemic levels, liver transplant (LTx) patients showed a comparable inhibition of endogenous glucose production. In contrast, in hypoglycemia, after a temporary fall endogenous glucose production rose to values comparable to those of the basal condition in CU and normal subjects (83+/-5 and 92+/-5% of basal), but it did not in LTx subjects (66+/-7%; P < 0.05 vs. CU and normal subjects). Fasting insulin and C-peptide levels were increased up to 6 mo after transplantation, indicating insulin resistance partially induced by prednisone. In addition, greater C-peptide but similar insulin levels during the hyperglycemic clamp (study 1) suggested an increased hepatic insulin clearance in LTx as compared to normal subjects. Fasting glucagon concentration was higher 6 mo after transplantation and thereafter. During euglycemia/hyperinsulinemia (study 3), the insulin-induced glucagon suppression detectable in CU and normal subjects was lacking in LTx subjects; furthermore, the counterregulatory response during hypoglycemia was blunted. In summary, liver transplant subjects have normal postabsorptive glucose metabolism, and glucose and insulin challenge elicit normal response at both hepatic and peripheral sites. Nevertheless, (a) minimal alteration of endogenous glucose production, (b) increased concentration of insulin and glucagon, and (c) defective counterregulation during hypoglycemia may reflect an alteration of the liver-CNS-islet circuit which is due to denervation of the transplanted graft.

PMID:
9259593
PMCID:
PMC508266
DOI:
10.1172/JCI119609
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Society for Clinical Investigation Icon for PubMed Central
Loading ...
Support Center