Send to

Choose Destination
Mech Dev. 1997 Jul;65(1-2):3-17.

Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA.

Author information

Department of Biochemistry and Molecular Biology, USC Norris Cancer Hospital and Research Institute, University of Southern California School of Medicine, Los Angeles 90033, USA.

Erratum in

  • Mech Dev 1997 Dec;69(1-2):219.


Msx2 is a homeobox gene with a regulatory role in inductive tissue interactions, including those that pattern the skull. We demonstrated previously that individuals affected with an autosomal dominant disorder of skull morphogenesis (craniosynostosis, Boston type) bear a mutated form of Msx2 in which a histidine is substituted for a highly conserved proline in position 7 of the N-terminal arm of the homeodomain (p148h). The mutation behaves as a dominant positive in transgenic mice. The location of the mutation in the N-terminal arm of the homeodomain, a region which in other homeodomain proteins plays a key part in protein-protein interactions, prompted us to undertake a yeast two hybrid screen for Msx2-interacting proteins. Here we present a functional analysis of one such protein, designated Miz1 (Msx-interacting-zinc finger). Miz1 is a zinc finger-containing protein whose amino acid sequence closely resembles that of the yeast protein, Nfi-1. Together these proteins define a new, highly conserved protein family. Analysis of Miz1 expression by Northern blot and in situ hybridization revealed a spatiotemporal pattern that overlaps that of Msx2. Further, Miz1 is a sequence specific DNA binding protein, and it can function as a positive-acting transcription factor. Miz1 interacts directly with Msx2 in vitro and enhances the DNA binding affinity of Msx2 for a functionally important element in the rat osteocalcin promoter. The p148h mutation in Msx2 augments the Miz1 effect on Msx2 DNA binding, suggesting a reason why this mutation behaves in vivo as a dominant positive, and providing a potential explanation of the craniosynostosis phenotype.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center