Send to

Choose Destination
Mech Ageing Dev. 1997 Oct;98(1):1-35.

Cell aging in vivo and in vitro.

Author information

Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA.


It has become a staple assumption of biology that there is an intrinsic fixed limit to the number of divisions that normal vertebrate cells can undergo before they senesce, and this limit is in some way related to aging of the organism. The notion of such a limited replicative lifespan arose from the often repeated observation that diploid fibroblasts cannot proliferate indefinitely in monolayer culture, and that the number of divisions before senescence is directly related to the in vivo lifespan of different species. The in vitro evidence is countered by estimates that the number of cell divisions in some organs of rodents and man are one or more orders of magnitude higher than the in vitro limit, with no indication of the degenerative changes seen in culture. Serial transplantation experiments in animals also exhibit many more cell divisions than the in vitro studies, with some indicating an indefinite replicative lifespan. I present evidence that vertebrate cells are severely stressed by enzymatic dispersion and sustain cumulative damage during serial subcultivations. The evidence includes large increases in cell size and its heterogeneity, reductions in replicative efficiency at low seeding densities, appearance of abnormal structures in the cytoplasm, changes in metabolism to a common cell culture type, continuous loss of methyl groups and reiterated sequences from DNA, and a constant rate of decline of growth rate with passage. This evidence is complemented by the reduction induced in the replicative life span of diploid cells by a large array of treatments which have different primary targets in the cells. The most consistent and general observation of cell behavior in aging animals, with only a few exceptions, is a reduction in the rate of cell proliferation. This reduction is perpetuated when the cells are grown in culture, indicating it is an enduring and intrinsic property of the cells rather than a systemic effect of the aging organism. A similar heritable reduction in growth rate can be induced in established cell lines by prolonged incubation at quiescence. The reduction can be exaggerated by subculturing the quiescent cells under suboptimal conditions, just as the effects of age are exaggerated under stress. The constant decline of growth rate that occurs during serial passage of diploid cells may represent a similar decay of cell function. I propose that the limit on replicative lifespan is an artifact that reflects the failure of diploid cells to adapt to the trauma of dissociation and the radically foreign environment of cell culture. It is, however, a useful artifact that has given us much information about cell behavior under stressful conditions. The overall evidence indicates cell in vivo accumulate damage over a lifetime that results in gradual loss of differentiated function and growth rate accompanied by an increased probability for the development of cancer. Such changes are normally held to a minimum by the organized state of the tissues and homeostatic regulation of the organism. The rejection of an intrinsic limit on the number of cell divisions eliminates the need for a cellular clock, such as telomere length, that counts mitoses. I offer a heuristic explanation for the gradual reduction of cell function and growth capacity with age based on a cumulative discoordination of interacting pathways within and between cells and tissues. I also make a case for the use of established cell lines as model systems for studying heritable damage to cell populations that simulates the effects of aging in vivo, and represents a relatively unexplored area of cell biology.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center