Send to

Choose Destination
J Neurophysiol. 1997 Jul;78(1):43-50.

Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons.

Author information

Department of Anesthesiology, School of Medicine, University of Washington, Seattle 98195, USA.


Cannabinoids and their analogues have been found to inhibit N- and P/Q-type Ca2+ currents in cell lines and sympathetic neurons transfected with cannabinoid CB1 receptor. However, the effects of cannabinoids on Ca2+ currents in the CNS are largely unexplored. In this study we investigated whether these compounds inhibit Ca2+ channels in cultured rat hippocampal neurons. With the use of antibodies directed against the amino-terminus of the CB1 receptor, we found that in 5-day cultures pyramidally shaped neurons expressed somatic CB1 receptors, whereas in 4-wk cultures the receptor was predominately located on neurites. In early cultures, the cannabimimetic WIN 55,212-2 reversibly inhibited whole cell Ba2+ current in a concentration-dependent (K(1/2) = 21 nM) and pertussis-toxin-sensitive fashion. Inhibition was reduced by the CB1 antagonist SR141716. The current was unaffected by the nonpsychoactive enantiomer WIN 55,212-3. Maximal inhibition by the nonclassical cannabinoid agonist CP 55,940 and by an endogenous cannabinoid, anandamide, were similar to that seen with maximal concentrations of WIN 55,212-2. The Ba2+ current modulated by cannabinoids was carried by N-type (omega-conotoxin-GVIA-sensitive) and P/Q-type (omega-conotoxin-MVIIC-sensitive) channels. These results demonstrate cannabinoid-receptor-mediated inhibition of distinct Ca2+ channels in central neurons. Because the channels that underlie these currents are chiefly located presynaptically, and are required for evoked neurotransmitter release, our results suggest a major role for cannabinoids (endogenous and exogenous) in the modulation of synaptic transmission at CNS synapses.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center